

Perubahan dan Prediksi Tutupan Lahan menggunakan QGIS (Plugin Molusce)

M. Abdul Ghofur Al Hakim, S.Kel., M.Si

OUTLINE

Pengantar Tutupan Lahan

Pengolahan Data

Visualilasi Hasil Tutupan Lahan

Prediksi Tutupan Lahan menggunkan Molusce

Pengertian Tutupan Lahan

 Tutupan lahan (land cover) adalah penampakan fisik dan biotik di permukaan bumi, seperti vegetasi alami, air, lahan pertanian, permukiman, dan lain sebagainya. (FAO (Food and Agriculture Organization), 2000).

Contoh Kategori Tutupan Lahan:

Hutan (hutan primer, hutan sekunder)
Lahan pertanian (sawah, ladang, perkebunan)
Permukiman (perumahan, kawasan industri)
Badan air (danau, sungai, rawa)
Lahan terbuka (padang rumput, tanah kosong,

tambang)

•Lahan basah (mangrove, rawa-rawa)

Perubahan Tutupan Lahan

 Perubahan tutupan lahan merupakan transformasi jenis penutup lahan dari satu bentuk ke bentuk lain akibat faktor alam atau aktivitas manusia Lambin et al. (2001).

Dampak Perubahan Tutupan Lahan

Sedimentasi sungai: Erosi dari lahan terbuka Eutrofikasi

Urbanisasi cepat: kota berkembang tanpaperencanaan → pemukiman kumuh

Konflik lahan: perebutan hak milik atau adat

Metode Pemantauan Perubahan Tutupan Lahan

Citra Satelit: Landsat, Sentinel

Klasifikasi Citra: Supervised vs Unsupervised

SIG (GIS): Analisis spasial perubahan tutupan

Survei Lapangan: Verifikasi ground-truth

Contoh Studi Kasus Puncak Bogor

Pengolahan Data

Sumber-sumber Data Satelit Gratis

- ESA Copernicus (<u>https://dataspace.copernicus.eu/explore-data/data-</u> <u>collections/sentinel-data/sentinel-2</u>)
- NASA USGS Earth Explorer

(https://earthexplorer.usgs.gov/)

Pengantar QGIS dan Plugin Molusce

- Quantum GIS merupakan salah satu perangkat lunak Sistem Informasi Geografi yang bersifat open source dan free (gratis) yang digunakan untuk pengolahan data spasial.
- QGIS dapat menyediakan, menampilkan, menyunting, dan menganalisis data serta mendukung banyak format dan fungsionalitas data vektor, raster, dan basisdata.
- MOLUSCE (*Modules for Land Use Change Simulations*) merupakan salah satu *plugin* pemodelan penggunaan lahan yang menggunakan data raster multitemporal.

RGIS

Tahapan Pengolahan Data

Tahapan Pengolahan Data

Tahapan Penggunaan Plugin Molusce

Nusantara Geosains Institut By Berket Ecolestari Sejahtera

Tahapan Penggunaan Plugin Molusce

Celular Automata Simulation

- Unceklis centain function
- Ceklist simulation result, kemudian klik browse untuk menyimpan hasil prediksi tutupan lahan

Note : Rentang waktu data yang digunakan berpengaruh dengan hasil prediksi simulasi data.

Ex : Data 2015, 2020 dan 2025, jika dipilih "iterasi 1" pada model Celular Automata Simulation maka hasil prediksi data yang diperoleh untuk data tahun 2030.

Visualisasi Tahapan Molusce

Preparasi Data

Siapkan data :

- Data klasifikasi LU (Raster)
- Data shapefile batas administrasi

Plugin Molusce

Open Plugin Molusce :

Pilih Raster →
 Molusce → Molusce

Input Data

- Input data raster klasifikasi : Initial \rightarrow data pertama, final \rightarrow data kedua
- Add data pertama dan kedua untuk check match geometry data

Corellation Checking

Q MOLUSCE							-		×	
Inputs Evalu	ating correlation	Area Changes	Transition Potential Modelling	Cellular Automata Simulation	Validation	Messages				
First Raster	class_2020_rf								Ŧ	
Second Raster	Second Raster dass_2020_rf								-	
Check all rasters										
Method	Pearson's Correl			•						
		class_2020_rf	class_2023_rf							
	class_2020_rf		0.7509604052857829							
	dass_2023_rf									
Result										
Result										
	Check									
			0	%						

 Ceklist : check all raster → pilih check

Area Changes

Q MOLUSCE	- □ X Q *Peta LU_Molusca_baru - QGIS - □ X Project Edit View Layer Settings Blugins Vector Raster Database Web Mesh SCP Processing Help - □ X
Inputs Evaluating correlation Area Changes Transition Potential Modelling Cellular Automata Simulation Validation Messages	
Class statistics sq. km.	
Class color 2020 2023 Δ 2020 % 2023 % Δ %	
1 2819.86 sq. km. 2819.86 sq. km0.00 sq. km. 57.35552655092885 57.3555143470186 -1.2203910252139849e-05	
2 884.47 sq. km. 847.17 sq. km37.30 sq. km. 17.98999970914014 17.23135379807044 -0.7586459110696993	
3 236.16 sq. km. 475.77 sq. km. 239.61 sq. km. 4.803493654068367 9.67714148623694 4.873647832168572	Band 1 (Gray) Image: map: banu
4 390.73 sq. km. 346.67 sq. km44.06 sq. km. 7.947393824455293 7.051222048723298 -0.8961717757319949	Cartography
5 198.41 sq. km. 278.08 sq. km. 79.67 sq. km. 4.035613450905805 5.656058824474616 1.6204453735688116	-4 →5
Transition matrix	I→ I→
1 2 3 4 5 6	
1 0.9999997872234642 2.1277653591146625e-07 0.0 0.0 0.0 0.0 0.0	V2 1→4
2 0.0 0.7446677142236271 0.10787809114288252 0.031888340890019407 0.09589668667336144 0.0196691670701095	51 Q Point doud data management
3 0.0 0.1256537364017959 0.4199745343974065 0.151390763193185 0.15617731410300653 0.1468036519046060	04 V° × 2 - 3
4 0.0 0.08142549513705365 0.17361033265409226 0.5666434281250847 0.09841701511682485 0.0799037289669444	45 2 - 4 2 - 5
5 0.0 0.16819129354888784 0.40603308717539305 0.11029428070875745 0.2024724659945204 0.1130088725724411	19 3→ 3→1 Vector creation • Q Vector general
6 0.0 0.24216112950154528 0.34325580914391635 0.10191985792043183 0.2009947637888402 0.1116684396452664	4
Update tables Create changes map	3 → 4 3 → 5
0%	P → Q Vector tiles

- Class statistics \rightarrow pilih "Hektar (ha)"
- Klik \rightarrow Update table
- Klik \rightarrow Create change map

Transition Potential Modeling

- Pilih metode untuk membuat model → Artificial Neural Network (ANN)
- Klik \rightarrow Train Neural Network

Celular Automata Simulation

MOLUSCE							-		×
Inputs Evaluating c	orrelation	Area Changes	Transition Potential Modelling	Cellular Automata Simulation	Validation	Messages			
Transition potential	maps								
Directory path							Select	Directory	<i></i>
Filename prefix pote	ential_								
Certainty function								Browse.	
✓ Simulation result	D:/Workshop NGI/LU Molusca/Processing_2/prediksi_2025.tif								
	Number of simulation iterations						1		٢
			Sta	rt					

- Unceklis : "centain function"
- Ceklist simulation result, kemudian klik browse untuk menyimpan hasil prediksi tutupan lahan

Visualisasi Hasil Peta Prediksi

Validation

Inputs Evaluati	a correlation	Area Changes	Transition Potential Mode	lling Cellular Automata Sim	Validation	Necessed	_ 0		 Lakuka
eference Map imulated Map Validation Map	D:/Workshop NGI D:/Workshop NGI V Check persiste Number of validat	(LU Molusca/Pro I/LU Molusca/Pro ent classes ion iterations Start valida	cessing_2/class_2025_rf.tif cessing_2/prediksi_2025.tif	Browse Browse Create 5	Kaladon Ka Ka Ka	of Correctness oppa (overall) oppa (histogram) oppa (location)	74. 12458 0.58979 0.88600 0.66568 Calculate k	appa	prediks referer • - Klik -
1.0 0.8 0.6	 		Multiple-r	esolution budget				-	• - Klik -
0.4 0.2 0.0	0.0	0.5 1 No location, no quantity	1.0 1.5 'inform ^M m	2.0 2.5 edium location, edium quantity inform.	3.0 Perfect location, perfect quantity	3.5 inform.	4.0		Nilai Koefisin Kappa < 0.20 0.21 – 0.40 0.41 – 0.60
* + >	+ Q :	No location	. Pe	erfect location.					0.61 – 0.80 > 0.80 Sumber: (Kunz, 2017)

validasi data dan data e

Start validation

Calculate kappa

	· · · ·
Nilai Koefisin Kappa	Interpretasi Nilai Kappa
< 0.20	Rendah (Poor)
0.21-0.40	Lumayan (Fair)
0.41 - 0.60	Cukup (Moderate)
0.61-0.80	Kuat (Good)
> 0.80	Sangat kuat (Very Good)
Sumber: (Kunz, 2017)	

Note : Rentang waktu data yang digunakan berpengaruh dengan hasil prediksi simulasi data.

Ex : Data 2015, 2020 dan 2025, jika dipilih "iterasi 1" pada model Celular Automata Simulation maka hasil prediksi data yang diperoleh untuk data tahun 2030.

Terima Kasih

Daftar Pustaka

- Arif, N. (2011). Kajian Kemampuan Jaringan Syaraf Tiruan Berbasis Citra ALOS dalam Identifikasi Lahan Kritis. Tesis. Fakultas Geografi, Universitas Gadjah Mada. Yogyakarta
- FAO (Food and Agriculture Organization). (2000). Land Cover Classification System (LCCS): Classification Concepts and User Manual. Rome: FAO.
- Hapsary, Maharany Shandra Ayu, Sawitri Subiyanto, Hana Sugiastu Firdaus. 2021. Analisis Prediksi Perubahan Penggunaan Lahan Dengan Pendekatan Artificial Neural Network Dan Regresi Logistik Di Kota Balikpapan. Jurnal Geodesi Undip. Vol. 10 (2) : 88 – 97
- Kunz, A. (2017). *Misclassification and kappa-statistic: Theoretical relationship and consequences in application*.
- Lambin, E. F., Geist, H. J., & Lepers, E. (2001). The causes of land-use and land-cover change: Moving beyond the myths. Global Environmental Change, 11(4), 261–269. <u>https://doi.org/10.1016/S0959-3780(01)00007-3</u>
- Roseana, B., Subiyanto, S., & Sudarsono, B. (2019). Analisis Spasial Perkembangan Fisik Wilayah Kabupaten Klaten Menggunakan Sistem Informasi Geografis Dan Prediksinya Tahun 2025 Dengan CA Markov Model. *Jurnal Geodesi Undip*, 8(4), 59–68.
- Tasha, K. (2012). Pemodelan Perubahan Penggunaan Lahan Dengan Pendekatan Artificial Neural Network (Studi Kasus: Kabupaten Bengkalis, Provinsi Riau). Institut Pertanian Bogor.
- Wardani, D. W., Danoedoro, P., & Susilo, B. (2016). Kajian Perubahan Penggunaan Lahan Berbasis Citra Satelit Penginderaan Jauh Resolusi Menengah Dengan Metode Multi Layer Perceptron dan Markov Chain. *Majalah Geografi Indonesia*, 30(1), 9–18. <u>https://doi.org/0215-1790</u>