

Ekstraksi Parameter Kerentanan Tanah Longsor

Pendahuluan

Analisis dan pemetaan kerentanan tanah longsor menggunakan plugin SZ memerlukan data input sebagai training datanya. Data input tersebut merupakan parameter yang mempengaruhi terjadinya longsor. Dalam course ini, parameter yang digunakan adalah **kemiringan lereng**, **curah hujan**, **tutupan vegetasi**, **relief**, **tutupan lahan**, dan **inventaris longsor**. Peserta diharapkan mampu memahami tata cara dalam mempersiapkan setiap parameter data yang digunakan. *Sebagai catatan, peserta dipersilahkan menambahkan parameter pengaruh lainnya sesuai dengan keinginan. Pada dasarnya, metode ekstraksi yang dilakukan sama untuk parameter lainnya.

Tahapan utama dalam ekstraksi parameter kerentanan tanah longsor, yaitu:

1. Persiapan Parameter

• Peserta dapat mempersiapkan data parameter dengan mengunduh dari website yang berkaitan, menganalisis menggunakan *remote sensing*, dan menggunakan data hasil survey lapangan.

2. Membuat Slope Units

 Slope units adalah daerah aliran sungai yang dihasilkan dari data DEM menggunakan tools r.watershed pada plugin GRASS.

3. Menginput setiap parameter ke slope units

 Tools yang digunakan adalah Zonal Statistics (untuk data raster) dan Overlap Analysis (untuk data vektor tutupan lahan).

A. Persiapan Parameter

Data dan sumbernya yang disiapkan :

- Kemiringan Lereng (slope) dan Relief \rightarrow SRTM 30 m (NASA, USGS Earth Explorer) \rightarrow DEMNAS 10 m (Tanah Air Indonesia)
- Curah Hujan (temporal) → Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) 5 km
- Tutupan Vegetasi (temporal) → NDVI (Hasil analisis citra satelit)
- Tutupan Lahan → Rupa Bumi Indonesia (Tanah Air Indonesia)
- Inventaris Longsor → Titik dan waktu kejadian (Geoportal Data Bencana Indonesia BNPB)

B. Membuat Slope Units

Input Data DEM

Parameters Log	•	r.watershed
Elevation	<u>*</u>	Watershed basin analysis program.
MDEM_GARUT [EPSG:32748]	•	
Locations of real depressions [optional]		
	·	
Amount of overland flow per cell [optional]		
	×	
Percent of disturbed land, for USLE [optional]		
Toronto Mandra a surface dassa face face transferenti	·	
Terrain blocking overland surface flow, for USLE (optional)		
Minimum size of exterior waterched basin [ontional]		
3000	(C)	
Maximum length of surface flow, for USLE [optional]		
Not set	0	
Convergence factor for MFD (1-10) [optional]		
5	(2) E0	
Maximum memory to be used with -m flag (in MB) [optional]		
1000	C 10	
Enable Single Flow Direction (D8) flow (default is Multiple Flow Direction)		
Enable disk swap memory option (-m): Operation is slow		
Allow only horizontal and vertical flow of water		
Use positive flow accumulation even for likely underestimates	*	
0%		Cano

Gunakan tools **r.watershed** > Input "Elevation" masukkan data DEM > Atur "Minimum size of exterior watershed basin" sesuai dengan luas area kajian, dalam kasus ini dengan cakupan kabupaten Garut gunakan 3000 m² > Sisanya biarkan default

Cukup checklist output "Half basins" untuk menghasilkan luaran daerah aliran sungai yang akan dijadikan slope units > Sisanya un-checklist > Kemudian klik Run.

Hasil akhirnya akan muncul slope unit berupa daerah aliran sungai dalam bentuk vektor seperti gambar di samping.

C. Input Parameter ke Slope Unit

• Input parameter : ketinggian rata-rata per slope unit

Q Raster Analysis - Zonal Statistics	
Parameters Log	
Input layer	
SLOPE_UNITS_V2 [EPSG:32748]	- C 🔧
Selected features only	•
Raster layer	
PEM_GARUT [EPSG:32748]	•
Raster band	
Band 1 (Gray)	•
Output column prefix	
Elev_	
Statistics to calculate	
Mean	
Zonal Statistics	
[Create temporary layer]	
✓ Open output file after running algorithm	

- Cari tools Zonal Statistics pada toolbox > Masukkan layer slope units (vektor) pada "Input layer" > Masukkan data DEM (raster) pada "Raster layer" > Atur penamaan "Output column prefix" menjadi "Elev_"
- Pada opsi "Statistics to calculate", checklist pada opsi Mean. Hal ini akan menghasilkan perhitungan rata-rata ketinggian setiap fitur slope unit > Atur output file sesuai keinginan > Klik Run.

Hasilnya adalah layer baru dengan attribute table yang telah ditambahkan dari parameter data raster :

	Sebelum													
🔇 SL	Q SLOPE_UNITS_V2 — Features Total: 1613, Filtered: 1613, Selected: 0													
/		a > a	🛾 I 🗞 🧮	N 🖥	7 🔳	\$	P 🔚	11. 🌶			<u></u>			
	DN 🔶													
1	1													
2	2													
3	3													
4	4													
5	4													
6	5													
7	6													
8	7													
9	8													
10	8													
11	9													
12	10													
13	11													

Sesudah														
Q Z	Q Zonal Statistics — Features Total: 1613, Filtered: 1613, Selected: 0													
/	🥖 🐹 🗒 1 🏗 📅 🖂 🖉 1 1 💁 🚍 💟 🔩 🍸 🗶 📯 🔎 1 116 116 118 118 118 118 118 118 118 1													
	DN	Elev_mean												
1	2	1355,2872034												
2	1	1325,7457372												
3	39	1012,9227848												
4	42	1205,8505680												
5	42	732,00000000												
6	41	1172,9069646												
7	40	1096,1052941												
8	3	429,70731707												
9	4	421,56410256												
10	4	386,5												
11	37	793,12162162												
12	38	701,15053763												
13	35	1018,7449956												
14	37	611,00000000												

• Input parameter : kemiringan lereng rata-rata per slope unit

Canada and Analysis - Slope		,		Parameters
Parameters Log	•	Slope		Input layer
Elevation layer Elevation layer DEM_GARUT [EPSG:32748] Z factor 1,000000	•	This algorithm calculates the angle of inclination of the terrain from an input raster layer. The slope is expressed in degrees.		Selected fea Raster layer Slope [EPSc Raster band Band 1 (Gray)
Slope				Slope_
[Save to temporary file]				Statistics to calc
Chan autnut file ofter running algorithm				Mean
• Open output file after running algorithm				Zonal Statistics
			4	[Create tempor

🔇 Raster Analysis - Zonal Statistics	
Parameters Log	Zonal statistics
Input layer Imput layer StopE_UNITS_V2 [EPSG:3272 * Salected features only	This algorithm calculates statistics of a raster layer for each feature of an overlapping polygon vector layer.
Raster layer	
Slope [EPSG:32748]	
Raster band	
Band 1 (Gray) 👻	
Output column prefix	
Slope_	
Statistics to calculate	
Mean	
Zonal Statistics	
[Create temporary layer]	
✓ Open output file after running algorithm	

Ekstrak kemiringan lereng dengan tools **Slope** pada toolbox > Hasilnya adalah data raster nilai slope. Gunakan tools **Zonal statistics** untuk menghitung rata-rata slope dan diinput ke dalam slope unit yang sebelumnya sudah ditambahkan parameter elevasi rata-rata > Atur input seperti gambar sebelah kanan > Klik Run. Hasilnya field baru dengan keterangan Slope_mean telah ditambahkan.

	;	Sebelum		Sesudah									
🔇 Zor	nal Statistics — Features Total: 1613, Fi	iltered: 1613, Selected: 0	G	SLC	DPE_UNITS_V2 — F	eatures Total: 1613	, Filtered: 1613, Sele	cted: 0					
/ 1		📒 🔊 🔩 🝸 🗶 🌳 🔎 i 🐘 🕅 🔛 i 🗮 i 🔍 📾		/		1 1 1	ه 📄 🔁 ا	7 🗈	🐥 💭				
_	DN Elev_mean				DN A	Elev, mean	Slone mean						
1	2 1355,2872034					1226.2606620	10 527074051						
2	1 1325,7457372		1		1	1320,3000039	18,537874851						
3	39 1012,9227848		2		2	1353,1904434	17,754300806						
4	42 1205,8505680		3		3	443 84160296	28 773558308						
5	42 732,00000000		5		5	115,01100250	20,77555656500						
6	41 1172,9069646		4		4	390,40779467	24,010719656						
7	40 1096,1052941		5		4	390,40779467	24,010719656						
8	3 429,70731707		6		5	515 87302633	13 324827813						
9	4 421,56410256		0		5	515,07502055	13,324027013						
10	4 386,5		7		6	550,07726346	13,621118936						
11	37 793,12162162		8		7	485,43194009	17,660226468						
12	38 701,15053763		0		0	452 50720747	17 710100256						
13	35 1018,7449956		9		0	455,50759747	17,710109230						
14	37 611,00000000		1	0	8	453,50739747	17,718189256						

Catatan : Gunakan tools Zonal Statistics jika Anda ingin mengekstrak parameter dari data raster ke dalam slope unit (data vektor). Lakukan tahap yang sama untuk data curah hujan, NDVI, dan relief.

Input parameter : kategori tutupan lahan

5

Input seluruh layer tutupan lahan yang Anda gunakan (jangan digabung menjadi satu layer) > Masukkan layer Slope Unit sebagai "Input layer" > Pilih layer tutupan lahan yang ingin Anda gunakan dengan checklist pada opsi "Overlay layers" > Atur output penyimpanan > Klik Run.

Q Overla	ap — Features T	otal: 1613, Filtered	1613, Selected: 0						1.1
/ 🗷	815.0	× 0 0 1 6	🗏 🖸 🔩 🍸	🛎 🗞 👂 🎼 🕷 🕮	1 🖷 1 🔍 🚍				
_	DN	Elev_mean	Slope_mean	Bangunan_gedung_area	Bangunan_gedung_pc	Hutan_area	Hutan_pc	Lahan_kosong_area	Lahan_kosong_pc
43	14	527,05623169	6,3201478416	0	0	0	0	0	0
44	13	536,63448980	7,8314045987	0	0	0	0	0	0
45	12	465,60687888	17,939174092	0	0	0	0	0	0
46	53	881,04868366	18,301137807	0	0	22529,363498	0,4049513867	310896,7713312936	5,588177344103984
47	12	465,60687888	17,939174092	0	0	0	0	0	0
48	12	465,60687888	17,939174092	0	0	0	0	0	0
49	52	801,67190413	15,901373681	0	0	0	0	0	0
50	8	453,50739747	17,718189256	0	0	0	0	0	0
51	50	572,69655172	6,1938015836	0	0	0	0	0	0
52	7	485,43194009	17,660226468	0	0	0	0	0	0
53	28	507,99661338	7,9741931915	0	0	0	0	0	0
54	51	796,14869540	17,591774485	0	0	0	0	0	0
55	54	785,73074904	15,177813727	0	0	0	0	186956,14149505622	4,875487412946527
56	11	459,34475919	20,204227907	0	0	0	0	0	0
57	9	491,21156364	12,390301564	0	0	0	0	0	0
58	21	547,03691335	7,7250295820	0	0	0	0	0	0
59	19	486,35199099	11,951748056	0	0	0	0	0	0
60	22	568,84139837	9,7500334338	0	0	0	0	0	0
61	12	465,60687888	17,939174092	0	0	0	0	0	0
62	20	457,05673874	15,771483975	0	0	0	0	0	0
63	583	767,75791383	12,367324586	0	0	0	0	0	0
64	22	568,84139837	9,7500334338	569,6930804211097	0,020782045119279	0	0	0	0
65	584	1028,7869379	24,697426102	0	0	0	0	0	0
66	581	865,31090407	20,762045035	0	0	C	0	0	0
67	586	767,55175814	14,648188017	0	0	0	0	0	0
68	586	767,55175814	14,648188017	0	0	5317,8622767	0,3107368099	0	0
69	585	703,71810631	13,376007107	0	0	0	0	0	
70	50	572,69655172	6,1938015836	0	0	0	0	0	0
71	40	660.02052528	20 737873451	0	0		0	0	

- Hasilnya adalah layer baru dengan field tutupan lahan yang ditambahkan ke dalam slope unit.
- Terdapat 2 jenis field yang ditambahkan: Area (m²) dan persentase.
- Parameter yang digunakan adalah persentase tutupan lahan setiap kategorinya. Oleh karena itu, Anda dapat menghapus field dengan jenis Area karena tidak digunakan sebagai input parameter.
- Overlap Analysis berfungsi menghitung luas dan persentase dari kategori tutupan lahan setiap fitur slope unit.

• Input parameter : Titik kejadian tanah longsor

Vector General - Join Attributes by Location	×
Parameters Log	Join attributes by
Join to features in	 location
Selected features only Features they (geometric predicate) intersect overlap	This algorithm takes an input vector layer and creates a new vector layer that is an extended version of the input one, with additional attributes in its attribute table.
✓ contain ✓ are within	The additional attributes and their
equal cross	values are taken from a second vector layer. A spatial criteria is applied to select the values from the second layer that are added to
By comparing to	each feature from the first layer in
* TITIK_LONGSOR [EPSG:32748]	the resulting one.
Selected features only	
Fields to add (leave empty to use all fields) [optional]	
0 field(s) selected	
Join type	
Take attributes of the first matching feature only (one-to-one)	
Discard records which could not be joined	
Joined field prefix [optional]	
Joined layer [optional]	
[Create temporary layer]	
✓ Open output file after running algorithm	
Unjoinable features from first layer [optional]	
[Skip output]	
Open output file after running algorithm	•
0%	Cancel
Advanced * Run as Batch Process	Run Close Help

- Gunakan tools Join attributes by location : fungsinya adalah titik lokasi kejadian longsor akan ditambahkan ke dalam slope unit, sehingga akan ada beberapa fitur slope unit yang memiliki nilai yang menunjukkan adanya kejadian longsor pada slope unit tersebut.
- Masukkan layer slope unit pada "Join to features in" > Atur kondisi dengan checklist pada opsi overlap, are within, dan contain > Masukkan layer titik longsor Anda pada "By comparing to"
- Atur "Join type" dengan memilih opsi "Take attributes of the first matching feature only" > Biarkan pengaturan lainnya sebagai default > Atur file penyimpanan output Anda > Klik Run.

Hasilnya terdapat fitur slope unit yang memiliki nilai dari field titik longsor, ada juga yang tidak. Berikan nilai 1 pada fitur yang memiliki nilai FID longsor (menandakan fitur yang pernah terjadi longsor) dan nilai 0 untuk fitur yang tidak pernah terjadi longsor > Ubah nama field dari "FID" menjadi "LS" yang artinya Landslide. Field ini akan berfungsi sebagai variabel terikat (dependent) untuk input model nantinya.

🔇 Joir	ied layer — Featuri	es Total: 1613, Filte	red: 1613, Selected	: 0		1	🔇 Joined	d layer — Featur	es Total: 1613, Filte	red: 1613, Selected:	0		
1			= 🛯 😼 🔻	🔳 🏘 👂 🔠	11. 💋 🔛 I 🚍 I 🍳 🗐		/ 🕺	8168	× ĝ [] €	🗏 🛯 🖥 🕇	🌋 🚸 🞾 i 🖺	lii 🔰 🔛 I	2
	DN	Elev_mean	Slope_mean	FID			_	DN	Elev_mean	Slope_mean	LS		
67	1184	1311,3008494	21,643388579	81			67	1184	1311,3008494	21,643388579	1		
68	485	876,69610915	11,023556783	82			68	485	876,69610915	11,023556783	1		
69	412	1463,6066096	18,842329824	83			69	412	1463,6066096	18,842329824	1		
70	834	405,91495917	20,705103063	84			70	834	405,91495917	20,705103063	1		
71	909	691,28115104	16.151127725	85			71	909	691,28115104	16,151127725	1		
72	1197	478 24009856	18 652011085	86			72	1197	478,24009856	18,652011085	1		
72	1007	076 14249101	10,770541060	97			73	1003	926,14248191	19,770541060	1		
73	1005	257 22550254	10.057500476	87			74	827	257,23558251	18,057588476	1		
/4	02/	237,23330231	10,037300470	90			75	947	325,55626900	17,483359704	1		
75	947	325,55626900	17,483359704	91		\rightarrow	76	352	1941,4784436	31,534037912	1		
76	352	1941,4784436	31,534037912	93			77	676	1405,1468215	19,498024428	1		
77	676	1405,1468215	19,498024428	95			78	144	749,55375897	14,837013487	1		
78	144	749,55375897	14,837013487	96			79	1234	178,99286010	8,9375468619	1		
79	1234	178,99286010	8,9375468619	97			80	2	1353,1904434	17,754300806	0		
80	2	1353,1904434	17,754300806	NULL			81	1	1326,3606639	18,537874851	0		
81	1	1326,3606639	18,537874851	NULL			82	39	1009,2610578	30,328053959	0		
82	39	1009,2610578	30,328053959	NULL			83	42	730,88593155	1,4949133408	0		
83	42	730,88593155	1,4949133408	NULL			84	42	730,88593155	1,4949133408	0		
84	42	730,88593155	1,4949133408	NULL			85	41	1169,5118209	27,050232200	0		

Maka, hasil akhir dari ekstraksi parameter adalah slope units dengan parameter yang sudah ditambahkan sebagai input model nantinya, seperti berikut :

Q PAR	AMETER — Features	Total: 1613, Filt	ered: 1613, Selecte	d: 0										-	o x
// 3		i 🗠 🗎 🚺	ء 🛯 🗧 🖌	L 🝸 🏼 🏶 🎾	0 16 16 🖉 1										
123 DN	▼ = € 123												•	Update All	Update Selected
	DN	LS *	NDVI_mean	Elev_mean	Slope_mean	RnMax_mean	Rlf_mean	lcover_1 lcover	_2	lcover_3	lcover_4	lcover_5	lcover_6	lcover_7	lcover_8
1	400	1	0,5230442173	. 1264,4529259	. 10,25/15/610	55,185/28900	129,6/0/8541	0	0	0	() (0	0 5,/444/260:
2	1009	1	0,5971595125	. 857,49794096	. 17,602020608	55,843048787	323,84726135	0	0	0	(0,3693878870		0	0 2,042638743
3	518	1	0,4321861841	. 1005,6606534	11,358233505	53,458937823	302,57057265	0	0	0	10,498278746	. (1	0	0 19,66781822
4	189	1	0,4988899593	. 1091,8426103	. 18,544798229	54,071407555	364,22624022	0	0	0	37,403115290	. 15,088849789		0	0 7,57566635:
5	851	1	0,6300392056	. 1137,8835267	. 23,791755968	55,181052654	476,55016208	0	0	0	() (0	0 0,471992818
6	1190	1	0,6580898761	. 854,33333333	6,8863358053	50,000000000	267,00000000	0	0	0	8,9229156591	. (0	0
7	1098	1	0,4958173314	. 242,02536231	6,5279373018	56,242881774	379,46376811	0	0	0	39,616809787	. 0	1	0	0 1,097360830
8	323	1	0,4847676508	. 1179,0651967	10,670525806	54,204906581	242,29079114	0	0	0	() (0	0 18,84396310
9	874	1	0,6562176742	. 1591,1040447	26,384512420	54,805913790	398,30415443	0	0	0	() (0	0
10	1159	1	0,6146677687	. 451,52703067	21,572280642	56,522879390	500,39460624	0	0	0	11,252436748	. 0		0	0 1,17330728
11	292	1	0,4314825415	. 888,58964826	4,1449902295	54,131475858	77,475614945	0	0	0	() (1	0	0 22,1797921:
12	494	1	0,4086343130	. 718,73510343	2,9516606380	53,388646887	84,127759668	0	0	0	() (0	0 34,7954219
13	925	1	0,6148159965	. 682,28025390	21,763867303	55,782089256	467,83974904	0	0	0	39,599197240	. 0		0	0 0,88599524!
14	725	1	0,6227335060	. 1232,4163960	. 22,489210771	55,213502720	447,41136204	0	0	0	() (1	0	0 0,368643343
15	368	1	0,5472823230	. 1820,8444056	20,013955838	54,705799404	564,39067287	0	0	0	(0,3511175374		0	0 3,207811204
16	885	1	0,6580471118	. 835,54778417	21,221631113	55,480173397	444,79280206	0	0	0	47,564310719	. 1,6001586102		0	0 1,801903328
17	476	1	0,6372823961	. 2652,9536679	46,968081034	54,886848449	955,26254826	0	0	0	6,6966767605	. 0		0	0 14,7511858
18	802	1	0,6216596206	. 901,76644641	24,145364998	55,330729843	520,92437222	0	0	0	() (l l	0	0 0,38268364:
19	1127	1	0,6275571982	. 292,52010015	18,721230948	56,515798767	309,26890129	0 0,0374093	2657	0	0,0090474079	. 0,1264825808		0	0 1,453782788
20	895	1	0,5281902039	. 1466,9738400	14,629770676	55,187234713	371,19962189	0 0,4933833	3551	0	18,260087304	. 2,2382123716		0	0 8,59358281
21	787	1	0,5835346513	. 417,39063388	18,365877486	55,718176506	395,49806001	0	0	0	(0,0782561721		0	0 2,087060540
22	992	1	0,5703713987	. 1374,8684133	21,905505987	55,417950113	471,00831054	0	0	0	17,972218892	. 0,1025804908		0	0 1,359969358
23	1027	1	0,5519926467	. 813,12716691	14,351597168	56,296554893	300,19699179	0	0	0	(8,6527867721		0	0 7,90044178;
24	1016	1	0,6091930971	. 955,31607077	21,695322132	56,057921469	419,00948421	0	0	0	(0,1964062340		0	0 2,914692078
25	1181	1	0,6063267281	. 1438,8100775	22,544602414	55,637871147	456,88553875	0	0	0	52,838482448			0	0 0,583856508
26	1191	1	0,6272594090	. 394,57708783	23,650376796	56,430576131	333,11994535	0	0	0	() (0	0
27	1118	1	0,5757427211	. 432,75121299	. 13,575218350	56,384449706	357,08374621	0	0	0	() (0	0 11,3999654
4	w All Easturas					ł									
i sno	w Ail reatures 🚽														

Catatan : Pemberian nama field pada kategori tutupan lahan sebaiknya diubah seperti di atas, agar memudahkan dalam pemrosesan model nantinya.