

# Persiapan Parameter Kerentanan Tanah Longsor

## Pendahuluan

Analisis Daerah Aliran Sungai (DAS) berbasis Digital Elevation Model (DEM) merupakan pendekatan utama dalam memahami pola aliran air di suatu wilayah. DEM sebagai representasi digital permukaan bumi, menjadi dasar dalam pemetaan hidrologi untuk mengekstrak jaringan drainase, menentukan batas DAS, dan memahami pola aliran sungai.

Tahapan utama dalam pengolahan data DEM untuk analisis DAS, yaitu:

## 1. Pra-Pengolahan DEM

- Reproyeksi DEM: Mengubah sistem proyeksi data DEM menjadi UTM agar dapat menghitung setiap parameter dalam satuan meter.
- Fill Sinks: Mengisi depresi atau kesalahan nilai elevasi dalam DEM untuk memastikan kontinuitas aliran air.

## 2. Ekstraksi Jaringan Drainase

- Flow Direction: Menentukan arah aliran air berdasarkan perbedaan elevasi antar piksel.
- Flow Accumulation: Menghitung jumlah air yang mengalir ke setiap piksel untuk mengidentifikasi jalur drainase utama.

## 3. Penentuan Jaringan Sungai

- Flow Accumulation Thresholding: Menentukan nilai ambang batas untuk mengidentifikasi jaringan sungai dari hasil akumulasi aliran.
- Strahler's Order: Memberikan klasifikasi tingkatan sungai berdasarkan percabangan aliran.

## 4. Delineasi DAS

- Penentuan Titik Outlet: Menentukan titik keluaran aliran sungai untuk mendelineasi batas DAS.
- Pembuatan Poligon DAS: Menghasilkan batas wilayah DAS berdasarkan titik outlet dan arah aliran.



A. Pra-pengolahan Data DEM (Set Layer CRS)



## Input data DEMNAS (.tif) ke dalam QGIS



Klik kanan pada layer DEM > Klik Layer CRS > Atur sistem proyeksi (CRS) menjadi **EPSG:4326** (GCS WGS 1984)



Disusun dan disetujui oleh Nusantara Geosains Institut Apabila ditemukan kesalahan informasi dalam dokumen ini, harap menghubungi kami melalui email: <u>ngi@ecobes.id</u> | HP: <u>+62 851-2102-9441</u> (Whatsapp).



Hasilnya : Tanda "?" pada layer DEM hilang, dan CRS data DEM menjadi EPSG:4326 atau GCS WGS 1984

# A. Pra-pengolahan Data DEM (Reproyeksi ke UTM)



Klik **Raster** pada menu bar > **Projections** > Klik **Warp (Reproject)** 

| <b>Q</b> Raster Projections - Warp (Reproject)                  |           | ×       |
|-----------------------------------------------------------------|-----------|---------|
| Parameters Log                                                  |           |         |
| Input layer                                                     |           | <b></b> |
| DEMNAS_1109-33_v1.0 [EPSG:4326]                                 |           | •       |
| Source CRS [optional]                                           |           |         |
| Project CRS: EPSG:4326 - WGS 84                                 |           | - 🌚     |
| Target CRS [optional]                                           |           |         |
| EPSG:32748 - WGS 84 / UTM zone 48S                              |           | -       |
| Resampling method to use                                        |           |         |
| Nearest Neighbour                                               |           | •       |
| Nodata value for output bands [optional]                        |           |         |
| Not set                                                         |           | *       |
| Output file resolution in target georeferenced units [optional] |           |         |
| Not set                                                         |           | *<br>*  |
| Advanced Parameters                                             |           |         |
| Reprojected                                                     |           |         |
| [Save to temporary file]                                        |           |         |
| ✓ Open output file after running algorithm                      |           | •       |
|                                                                 |           |         |
| 0%                                                              |           | Cancel  |
| Advanced - Run as Batch Process                                 | Run Close | Help    |

Atur **Input layer** dengan DEM > Atur **Source CRS** dengan EPSG:4326 - WGS 84 > Atur Target CRS menjadi UTM (*Sesuaikan dengan UTM Zone di lokasi Anda*) – DEM saya ada di wilayah Banten, saya menggunakan **EPSG:32748 - WGS 84 / UTM Zone 48S** > Sisanya *default* saja

Output file biarkan tetap [Save to temporary file] saja > Klik Run



\*Untuk melihat data DEM Anda berada di UTM Zone apa, dapat dilihat di website ini : Zona UTM (Universal Transverse Mercator) Indonesia - inspeksi



Hasilnya data DEM sudah direproyeksi menjadi UTM

A. Pra-pengolahan Data DEM (Fill Sinks)



Pada Processing Toolbox, cari "Fill Sinks" > Pilih Fill sinks (Wang & Liu)



| Q Terrain Analysis - Hydrology - Fill Sinks (Wang & Liu) |     | ×      |
|----------------------------------------------------------|-----|--------|
| Darameters Log                                           |     |        |
| Parameters Lug                                           |     |        |
| DEM                                                      |     |        |
| Reprojected [EPSG:32748]                                 |     | •      |
| Minimum Slope [Degree]                                   |     |        |
| 0,100000                                                 |     | ÷      |
| Filled DEM                                               |     |        |
| [Save to temporary file]                                 |     |        |
| ✓ Open output file after running algorithm               |     |        |
| Flow Directions                                          |     |        |
| [Save to temporary file]                                 |     |        |
| ✓ Open output file after running algorithm               |     |        |
| Watershed Basins                                         |     |        |
| [Save to temporary file]                                 |     |        |
| ✓ Open output file after running algorithm               |     |        |
|                                                          |     |        |
|                                                          |     |        |
|                                                          |     |        |
|                                                          |     |        |
| 0%                                                       |     | Cancel |
| Advanced  Run as Batch Process                           | Run | Close  |

Masukkan data DEM hasil reproyeksi (UTM) ke parameter **DEM** > Parameter **Minimum Slope** dibiarkan *default* saja > *Unchecklist* atau hilangkan tanda "✓" pada output file Flow Directions dan Watershed Basins karena kita hanya menginginkan output **Filled DEM** saja > Atur output file dari Filled DEM > Klik **Run** 

\*Parameter **Minimum Slope [Degree]** menunjukkan seberapa kecil atau minimal kemiringan lereng (*slope*) sebagai batas atas dari elevasi yang "dianggap" error (*sink*). Artinya, jika terdapat piksel dengan nilai *slope* dibawah 0.1 derajat, maka seluruh piksel tersebut akan "ditambahkan" nilai elevasinya.

|                     | ✓ ✓ FILLED_DEM                                                           |
|---------------------|--------------------------------------------------------------------------|
|                     | 861,22821                                                                |
|                     | 20,835793                                                                |
|                     | 🔻 🗸 F <u>Reprojected</u>                                                 |
|                     | Band 1 (Gray)                                                            |
|                     | 861,22821                                                                |
|                     |                                                                          |
| Disu                | sun dan dis <u>etuki o</u> leh Nusantara Geosains Ins <mark>titut</mark> |
| Apabila ditemukan k | esalahan informasi dalam dokumen ini, harap menghubungi kami melalu      |
| ema                 | ail: ngi@ecobes.id   HP: <u>+62 851-2102-9441</u> (Whatsapp).            |



Hasil akhirnya akan seperti ini. Terdapat perubahan nilai elevasi terendah dari data DEM.

B. Ekstraksi Jaringan Drainase (Flow Direction)

| 🔇 Terrain Analysis - Hydrology - Fill Sinks (Wang & Liu)  |                        | ×         |  |  |  |  |  |  |
|-----------------------------------------------------------|------------------------|-----------|--|--|--|--|--|--|
| Parameters Log                                            |                        |           |  |  |  |  |  |  |
| DEM                                                       |                        |           |  |  |  |  |  |  |
| FILLED_DEM [EPSG:32748]                                   |                        | •         |  |  |  |  |  |  |
| Minimum Slope [Degree]                                    | Minimum Slope [Degree] |           |  |  |  |  |  |  |
| 0,100000                                                  |                        | <b>\$</b> |  |  |  |  |  |  |
| Filled DEM                                                |                        |           |  |  |  |  |  |  |
| [Save to temporary file]                                  |                        |           |  |  |  |  |  |  |
| Open output file after running algorithm                  |                        |           |  |  |  |  |  |  |
| Flow Directions                                           |                        |           |  |  |  |  |  |  |
| C:/00_NGI/01_PEMETAAN_DAS/02_Tutorial/FLOW_DIRECTION.sdat |                        |           |  |  |  |  |  |  |
| ✓ Open output file after running algorithm                |                        |           |  |  |  |  |  |  |
| Watershed Basins                                          |                        |           |  |  |  |  |  |  |
| [Save to temporary file]                                  |                        |           |  |  |  |  |  |  |
| Open output file after running algorithm                  |                        |           |  |  |  |  |  |  |
|                                                           |                        |           |  |  |  |  |  |  |
|                                                           |                        |           |  |  |  |  |  |  |
|                                                           |                        |           |  |  |  |  |  |  |
|                                                           |                        |           |  |  |  |  |  |  |
| 0%                                                        |                        | Cancel    |  |  |  |  |  |  |
| Advanced * Run as Batch Process                           | Run                    | Close     |  |  |  |  |  |  |

Gunakan tools **Fill Sinks (Wang & Liu)** kembali > Input layer "FILLED\_DEM" sebagai data utama DEM > Unchecklist output file dari Filled DEM dan Watershed Basins, cukup checklist **Flow Directions** > Atur file penyimpanan Anda > Klik **Run** 



Disusun dan disetujui oleh Nusantara Geosains Institut Apabila ditemukan kesalahan informasi dalam dokumen ini, harap menghubungi kami melalui email: <u>ngi@ecobes.id</u> | HP: <u>+62 851-2102-9441</u> (Whatsapp).



Hasilnya seperti ini. Nilai -1 sampai 7 menunjukkan orientasi dari aliran air. Nilai tersebut dapat direklasifikasi menjadi : | -1 (no data) |  $0 \rightarrow 1 | 1 \rightarrow 2 | 2 \rightarrow 4 | 3 \rightarrow 8 | 4 \rightarrow 16 | 5 \rightarrow 32 | 6 \rightarrow 64 | 7 \rightarrow 128 |$ 

#### \*Ingat kembali algoritma Deterministic 8 (D8)

## B. Ekstraksi Jaringan Drainase (Flow Accumulation)

| Q Terrain Analysis - Hydrology - Catchment Area | ×      | X Terrain Analysis - Hydrology - Catchment Area | × |
|-------------------------------------------------|--------|-------------------------------------------------|---|
|                                                 |        | Drawster, Las                                   |   |
| Parameters Log                                  |        | A Ligar Flow Throchold                          |   |
| Elevation                                       |        |                                                 |   |
| FILLED_DEM [EPSG:32748]                         | •      | 500 ×                                           |   |
| Sink Routes [optional]                          |        |                                                 | 5 |
|                                                 | •      |                                                 |   |
| Weights [optional]                              |        | Contour Length                                  |   |
|                                                 | •      | Prevent Negative Flow Accumulation              |   |
| Input for Mean over Catchment [optional]        |        | Flow Accumulation                               |   |
|                                                 | •      | [Save to temporary file]                        | 4 |
| Material for Accumulation [optional]            |        | ✓ Open output file after running algorithm      |   |
|                                                 | •      | Mean over Catchment                             |   |
| Accumulation Target                             |        | [Save to temporary file]                        | 1 |
| FILLED_DEM [EPSG:32748]                         | •      | Open output file after running algorithm        |   |
| Step                                            |        | Accumulated Material [optional]                 |   |
| 1                                               | ÷      | [Save to temporary file]                        |   |
| Flow Accumulation Unit                          |        | Open output file after running algorithm        |   |
| [1] cell area                                   | *      | Accumulated Material (Left Side) [optional]     |   |
| Linear Flow Threshold Grid [optional]           |        | [Save to temporary file]                        |   |
|                                                 | ×      | Open output file after running algorithm        |   |
| Channel Direction [optional]                    |        | Accumulated Material (Right Side) [optional]    |   |
|                                                 | ·      | [Save to temporary file]                        |   |
| Method                                          |        | Open output file after running algorithm        |   |
| [0] Deterministic 8                             | •      | Flow Path Length [optional]                     |   |
| Thresholded Linear Flow                         |        | [Save to temporary file]                        |   |
| Linear Flow Threshold                           |        | Open output file after running algorithm        |   |
| 500                                             | ÷      | Loss through Negative Weights [optional]        |   |
| Convergence                                     |        | [Save to temporary file]                        |   |
| 1,100000                                        | ÷      | Open output file after running algorithm        |   |
| Contour Length                                  |        |                                                 |   |
| ✓ Prevent Negative Flow Accumulation            | Ŧ      |                                                 | Ŧ |
|                                                 |        |                                                 |   |
| 0%                                              | Cancel | 0% Cancel                                       |   |
| Advanced - Run as Batch Process                 | Close  | Advanced - Run as Batch Process Run Close       |   |

Cari tools **Catchment Area** pada Processing Toolbox, jangan pilih tools Catchment Area (flow tracing) atau (recursive) > Masukkan layer "FILLED\_DEM" ke parameter **Elevation** dan **Accumulation Target** > Biarkan parameter lain *by default* saja > *Unchecklist* seluruh output file parameter kecuali output **Flow Accumulation** > Atur file penyimpanan > Klik **Run** 





Hasil akhirnya seperti ini. Anda dapat mengatur pada simbologi layer untuk melihat hasilnya lebih jelas lagi.



- Nilai minimum = 68.7736 → Menunjukkan terdapat piksel dengan akumulasi aliran yang paling kecil.
- Nilai maksimum = 169,204,000 → Menunjukkan terdapat piksel dengan • akumulasi aliran yang mengarah ke piksel tersebut hingga mencapai nilai maksimum.
- Berdasarkan teori, nilai maksimum akan menunjukkan sungai yang sesungguhnya. Sementara nilai minimum, hanya menunjukkan area tangkapan air saja (catchment area) bukan sungai sesungguhnya.

| Q Layer Properties - FLOV | V_ACCUMULATION — Symbology         |                 |                 |                   | ×        |                    |                                                |
|---------------------------|------------------------------------|-----------------|-----------------|-------------------|----------|--------------------|------------------------------------------------|
| Q                         | <ul> <li>Band Rendering</li> </ul> |                 |                 |                   | <u>^</u> | Jika               | Anda n                                         |
| information               | Render type Singleband pseu        | udocolor 👻      |                 |                   |          | men                | iadi ser                                       |
| Source                    | Band                               | Band 1          |                 |                   | -        | men                |                                                |
|                           | Min                                | 68,7735596      | Max             | 60425,9906784     |          | men                | ggunakai                                       |
| Symbology                 | ▼ Min / Max Value Settin           | igs             |                 |                   |          | (2-9)              | 8%) mał                                        |
| Transparency              | O User defined                     |                 |                 |                   |          | ( <u> </u>         | <i>o , o ,</i> , , , , , , , , , , , , , , , , |
| 📐 Histogram               | Cumulative count cut               | 2,0             | 4 1 - 98,0      | ☑ ;               | %        | now                | accum<br>orti di bov                           |
| ≼ Rendering               | O Min / max                        |                 |                 |                   |          | Sep                | enti di bav                                    |
| 🕓 Temporal                | ⊖ Mean +/-<br>standard de⊻iation × |                 | 2,00            |                   |          |                    | ×                                              |
| 🖄 Pyramids                | Statistics extent                  | Whole raster    |                 | •                 |          |                    | NK Z                                           |
| Elevation                 | Accuracy                           | Actual (slower) |                 | •                 |          |                    | The St                                         |
| 📝 Metadata                | Interpolation                      | Linear          |                 |                   | •        |                    | ARE                                            |
| Legend                    | Color ramp                         | Disusun         | dan disetuiui   | oleh Nusa         | ntara    | Geosain            | s Institut                                     |
|                           | Label unit suffix                  | litemukan kees  | alahan informas | i dalam doki      | imen     | ni haran i         | penchubun                                      |
| - Display                 | Label precision                    | 4 omoil         |                 |                   |          | 2 0441 /\A         | botodoo                                        |
| Attribute Tables          | Value Color                        | Label email.    | ngi@ecobes.id   | HF. <u>+02 03</u> | 1-210    | <u>2-944  </u> (V) | riaisapp).                                     |
| GIS Server                | 68,7735596                         | 68,7736         |                 |                   |          |                    | KOSEK 12                                       |

a Anda merubah simbologi layer ini njadi seperti gambar di samping, nggunakan Cumulative count cut 98%), maka Anda dapat melihat hasil w accumulation yang lebih jelas. perti di bawah ini. \**Ini hanya visualisasi* 

nenghubungi kami melalui



# C. Penentuan Jaringan Sungai (Flow Accumulation Thresholding)

| Q Terrain Analysis - Channels - Channel Network        |     | ×        |
|--------------------------------------------------------|-----|----------|
| Parameters Log                                         |     |          |
| Elevation                                              |     | <b>_</b> |
| FILLED_DEM [EPSG:32748]                                |     | ·        |
| Flow Direction [optional]                              |     |          |
| FLOW_DIRECTION [EPSG:32748]                            |     | •        |
| Initiation Grid                                        |     |          |
| FLOW_ACCUMULATION [EPSG:32748]                         |     | •        |
| Initiation Type                                        |     |          |
| [2] Greater than                                       |     | •        |
| Initiation Threshold                                   |     |          |
| 1100000,000000                                         |     | ≪ ‡      |
| Divergence [optional]                                  |     |          |
|                                                        |     | •        |
| Tracing: Max. Divergence                               |     |          |
| 5                                                      |     | <b>‡</b> |
| Tracing: Weight [optional]                             |     |          |
|                                                        |     | •        |
| Min. Segment Length                                    |     |          |
| 10                                                     |     | •        |
| Channel Network                                        |     |          |
| C:/00_NGI/01_PEMETAAN_DAS/02_Tutorial/CHANNEL_NET.sdat |     | ≪        |
| ✓ Open output file after running algorithm             |     |          |
| Channel Direction                                      |     |          |
| [Save to temporary file]                               |     |          |
| Open output file after running algorithm               |     |          |
| Channel Network                                        |     |          |
| C:/00_NGI/01_PEMETAAN_DAS/02_Tutorial/CHANNEL_NET.shp  |     | ≪        |
| ✓ Open output file after running algorithm             |     | •        |
| 004                                                    |     | Cancol   |
|                                                        |     | Cancer   |
| Advanced  Run as Batch Process                         | Run | Close    |

Cari tools **Channel network** pada Processing Toolbox > Input layer "FILLED\_DEM" pada parameter **Elevation** > Input layer "FLOW\_DIRECTION" pada **Flow Direction** > Input "FLOW\_ACCUMULATION" pada Initiation Grid.



Pilih [2] Greater than pada parameter Initiation Type > Atur Initiation Threshold sesuai hasil perhitungan threshold : Luas Area / Luas resolusi piksel > Parameter lain *default* saja > Atur output pada Channel Network (atas dan bawah), tidak perlu Channel Direction. Output pertama akan menghasilkan jaringan sungai dalam bentuk raster, sementara output kedua dalam bentuk vektor (shapefile) > Klik Run

\*Tujuan tools ini adalah membuat jaringan sungai dengan menghitung nilai piksel dari **Flow Accumulation** yang lebih besar dari (*greater than*) threshold nya.



Berikut adalah jaringan sungai hasil perhitungan menggunakan Flow Accumulation Thresholding

## C. Penentuan Jaringan Sungai (Strahler's Order)

| Q Terrain Analysis - Channels - Strahler Order                                         | ×               |
|----------------------------------------------------------------------------------------|-----------------|
| Parameters Log                                                                         |                 |
| Elevation                                                                              |                 |
| FILLED_DEM [EPSG:32748]                                                                |                 |
| Strahler Order                                                                         |                 |
| C:/00_NGI/01_PEMETAAN_DAS/02_Tutorial/STRAHLER_ORDER.sdat                              |                 |
| ✓ Open output file after running algorithm                                             |                 |
|                                                                                        |                 |
|                                                                                        |                 |
|                                                                                        |                 |
|                                                                                        |                 |
|                                                                                        |                 |
|                                                                                        |                 |
|                                                                                        |                 |
|                                                                                        |                 |
| Disusun dan disetujui oleh Nusantara Geosains Institut                                 |                 |
| nahila diternukduardek salkun as Bator Processi, dalam dokumen ini har Runmen obcioser | ndi kami melalı |
| email primer thestill HP 102 051-2102-9441 (Mina/sam)                                  |                 |



## Cari tools **Strahler Order** pada Processing Toolbox > Masukkan "FILLED\_DEM" sebagai input parameter **Elevation** > Atur output file penyimpanan > Klik **Run**



Berikut adalah hasil dari Strahler Order. Nilai 1 - 9 menunjukkan rentang nilai dari order jaringan sungai.

| <u>R</u> aster | <u>D</u> atabase  | <u>W</u> eb | <u>M</u> esh |  |  |  |  |
|----------------|-------------------|-------------|--------------|--|--|--|--|
| 📲 Ras          | naster Calculator |             |              |  |  |  |  |
| Ana            | alysis            |             | •            |  |  |  |  |
| Projections    |                   |             |              |  |  |  |  |
| Miscellaneous  |                   |             |              |  |  |  |  |
| Ext            | raction           |             | •            |  |  |  |  |
| Cor            | nversion          |             | •            |  |  |  |  |
| 🔆 Alig         | jn Rasters        |             |              |  |  |  |  |



Gunakan Raster Calculator pada menu bar Raster.

Untuk menentukan batas/threshold ordo jaringan

yang digunakan sebagai penentuan jaringan sungai

| Raster Calcul                                                                                 | ator                                                                         |    |                                                                                                                                                                                      |                                                                                                                               |                                                                                        |                                                                                        | ×   |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----|
| Raster Bands                                                                                  | 5                                                                            |    | Result Layer                                                                                                                                                                         |                                                                                                                               |                                                                                        |                                                                                        |     |
| CHANNEL_N<br>DEMNAS_111<br>FILLED_DEN<br>FLOW_ACCL<br>FLOW_DIRER<br>Reprojected<br>STRAHLER_1 | 5<br>IET@1<br>09-33_v1.0@1<br>4@1<br>JMULATION@1<br>CTION@1<br>@1<br>ORDER@1 |    | Result Layer<br>Create on-t<br>Output layer<br>Output format<br>Spatial Exter<br>Use Selecte<br>X min 6105<br>Y min 9253<br>Resolution<br>Columns 33<br>Output CRS<br>✓ Add result t | he-fly raster<br>S\02_Tutc<br>GeoTIFF<br><b>it</b><br>d Layer Exter<br>14,25866<br>707,73450<br>440<br>EPSG:327<br>to project | instead of writi<br>vial\STRAHLER<br>t<br>X max 6<br>Y max 9<br>Ror<br>48 - WGS 84 / 1 | ing layer to disk<br>_ORDER_6<br>38212,82072<br>281414,58955<br>ws 3341<br>UTM zor v 1 |     |
| ▼ Operators                                                                                   | *                                                                            | () | min                                                                                                                                                                                  | IF                                                                                                                            | cos                                                                                    | acos<br>asin                                                                           |     |
| <                                                                                             | >                                                                            | =  | abs                                                                                                                                                                                  | OR                                                                                                                            | tan                                                                                    | atan                                                                                   |     |
| <=                                                                                            | >=                                                                           | != | <b>^</b>                                                                                                                                                                             | sqrt                                                                                                                          | log10                                                                                  | In                                                                                     |     |
| Raster Calcu                                                                                  | <b>lator Expressi</b><br>RDER01" >= 6                                        | on |                                                                                                                                                                                      |                                                                                                                               |                                                                                        |                                                                                        |     |
| Expression vali                                                                               | d                                                                            |    |                                                                                                                                                                                      | 0                                                                                                                             | OK Ca                                                                                  | ncel He                                                                                | elp |

- Double klik pada "STRAHLER\_ORDER@1" yang ada pada list Raster Bands untuk dimasukkan ke Raster Calculator Expression
- Klik tanda ">= " atau lebih dari sama dengan.
- Input threshold yang Anda inginkan sebagai batas bawah penentu Strahler Order. Sesuaikan dengan hasil ordo Anda. Dalam kasus saya (1-9), maka saya mengambil batas bawah 6.
- Artinya, ordo jaringan 6 ke atas akan dianggap sebagai jaringan sungai, sementara 5 ke bawah tidak akan dianggap jaringan sungai.
- Tidak ada acuan pasti dalam penentuan threshold ini, perlu dilakukan *trial and error* untuk melihat hasil jaringan yang paling sesuai dengan kebutuhan Anda.
- Setelah memasukkan *expression*, atur output layer pada file Anda > Sisanya cukup *default* > Klik **OK**

| • | Hasil yang mungul akan masih sama    | Q Layer Properties - STRAHLER_ORDER_6 — Symbology |                      |                         |            |           | ×             |            |          |
|---|--------------------------------------|---------------------------------------------------|----------------------|-------------------------|------------|-----------|---------------|------------|----------|
| • | riasii yang muncui akan masin sama.  | Q                                                 |                      | idering                 |            |           |               |            |          |
|   | Anda perlu mengubah simbologi nya    | information                                       | Render type          | Paletted/Uniqu          | e values 💌 |           |               |            |          |
|   | agar terlihat perbedaannya.          | Source                                            | Band                 | Band 1 (Gray)           |            |           |               |            | •        |
|   | <b>o</b>                             |                                                   | Color ramp           |                         |            | Rand      | lom colors    |            | •        |
| • | Masuk ke Properties laver hasil      | Symbology                                         | Value                | Color                   | Label      |           |               |            |          |
| • |                                      | Transparency                                      | 0                    |                         | 0          |           |               |            |          |
|   | Raster Calculator (Strahler Order >= | 🗠 Histogram                                       |                      |                         |            |           |               |            |          |
|   | 6) > Symbology > Atur Render type    | 🞸 Rendering                                       | 1                    |                         | 1          |           |               |            |          |
|   | menjadi Palleted/Unique values.      | 🕓 Temporal                                        |                      |                         |            |           |               |            |          |
|   |                                      | 🖄 Pyramids                                        |                      |                         |            |           |               |            |          |
|   |                                      | Elevation                                         |                      |                         |            |           |               |            |          |
|   |                                      | 📝 Metadata                                        |                      |                         |            |           |               |            |          |
|   |                                      | Legend                                            |                      | Class                   | ify        |           |               | Delete All |          |
|   |                                      | 🧭 Display                                         | 🔻 Layer Rei          | ndering                 |            |           |               |            |          |
|   |                                      | Attribute Tables                                  | Blending mo          | de Normal               |            |           | •             |            | 👆 Reset  |
|   | Disusun dan dis                      | etujui oleh N                                     | usanta               | ar <mark>a Geo</mark>   | osains Ir  | nstitut 🔅 | Contrast      |            | - 0 -    |
|   | Apabila ditemukan kesalahan inf      | orfnasi dalam                                     | daham                | en <del>-</del> ini, ha | arap men   | ghubungi  | ksatunation   | alui -     | - 0 🗘    |
|   | email: ngi@ecol                      | <u> 유</u> 권에 HP: <u>+(</u>                        | 2 8 <del>6</del> 1 4 | Ba 02-944               | 41 (Whats  | sapp).    | Grayscale Off |            | •        |
|   |                                      |                                                   | Hue                  | Colorize                |            | Strength  |               |            | □ 100% 🗘 |



- Klik Classify > Muncul 2 nilai, 0 dan 1 → Nilai 0 adalah ordo jaringan di bawah 6, nilai adalah jaringan sungai (ordo >= 6).
- Hilangkan kelas value 0, cukup gunakan value 1 saja > Klik Apply > Klik OK



Berikut adalah hasil dari Strahler's Order dengan nilai ordo sekarang adalah 6 - 9.

| Q Terrain Analysis - Channels - Channel Network and Drainage Basins × |
|-----------------------------------------------------------------------|
| Parameters Log                                                        |
| Elevation                                                             |
| FILLED_DEM [EPSG:32748]                                               |
| Threshold                                                             |
| 6 🚳 🗘                                                                 |
| Subbasins                                                             |
| Flow Direction [optional]                                             |
| [Save to temporary file]                                              |
| Open output file after running algorithm                              |
| Flow Connectivity [optional]                                          |
| [Save to temporary file]                                              |
| Open output file after running algorithm                              |
| Strahler Order [optional]                                             |
| [Save to temporary file]                                              |
| Open output file after running algorithm                              |
| Drainage Basins [optional]                                            |
| [Save to temporary file]                                              |
| Open output file after running algorithm                              |
| Channels                                                              |
| C:/00_NGI/01_PEMETAAN_DAS/02_Tutorial/CHANNEL_STRAHLER.shp            |
| ✓ Open output file after running algorithm                            |
| Drainage Basins                                                       |
| [Save to temporary file]                                              |
| Open output file after running algorithm                              |
| Junctions [optional]                                                  |
| [Save to temporary file]                                              |
| Open output file after running algorithm                              |
|                                                                       |
| 0% Cancel                                                             |
| Advanced - Run as Batch Process Disusun dan disetuju                  |

- Untuk membuat vektor (.shp) jaringan dari Strahler, cari Channel Network and Drainage Basins pada Processing Toolbox > Masukkan "FILLED\_DEM" sebagai input Elevation > Atur Threshold sesuai threshold pada Raster Calculator sebelumnya, yakni 6.
- Unchecklist seluruh parameter output, kecuali output file
   Channels > Atur output file penyimpanan > Klik Run
- Berikut adalah hasil dari Channel Strahler's Order.





## D. Ekstraksi atau Delineasi DAS (Menggunakan jaringan hasil Flow Accumulation)

| Q Terrain Analysis - Channels - Watershed Basins        |     |     |      |
|---------------------------------------------------------|-----|-----|------|
| Parameters Log                                          |     |     |      |
| Elevation                                               |     |     | 1    |
| FILLED_DEM [EPSG:32748]                                 |     | •   | ]    |
| Channel Network                                         |     |     |      |
| CHANNEL_NET [EPSG:32748]                                |     | •   |      |
| Sink Route [optional]                                   |     |     |      |
|                                                         |     | •   |      |
| Min. Size                                               |     |     |      |
| 0                                                       |     |     | ÷    |
| Watershed Basins                                        |     |     |      |
| C:/00_NGI/01_PEMETAAN_DAS/02_Tutorial/DAS_FLOW_ACC.sdat |     |     |      |
| ✓ Open output file after running algorithm              |     |     |      |
|                                                         |     |     |      |
| 0%                                                      |     | Car | icel |
| Advanced 👻 Run as Batch Process                         | Run | Clo | se   |

- Cari tools Watershed Basins pada Processing Toolbox > Masukkan "FILLED\_DEM" sebagai Elevasi > Masukkan jaringan sungai hasil perhitungan Channel Network dengan Flow Accumulation ke parameter Channel Network
- Sink Route dan Min. Size dikosongkan saja.
- Atur output file > Klik **Run**







Berikut adalah hasil akhir dari delineasi Daerah Aliran Sungai menggunakan jaringan sungai hasil perhitungan Flow Accumulation (sebelah kiri).

Jika disandingkan dengan jaringan sungainya (sebelah kanan), terlihat bahwa terdapat aliran sungai yang tidak terbentuk DAS nya. Hal ini dikarenakan tools tidak membaca aliran tersebut sebagai sebuah "jaringan" sehingga tidak terbentuk DAS yang mengelilingi aliran tersebut.

Namun, hal ini dapat diatasi menggunakan tools Upslope Area dengan menentukan sendiri titik outlet dari aliran sungai yang kita inginkan, sehingga akan membentuk DAS dari aliran sungai tersebut.



- Tentukan titik dari outlet yang diinginkan. Pastikan berada di atas layer raster dari Channel Network tersebut.
- Ada 2 cara yang bisa dilakukan untuk memperoleh koordinat dari titik tersebut :
  - Klik kanan secara langsung pada piksel jaringan sungai > Copy Coordinate



- Menghitung koordinat (xy) dengan Field Calculator pada atribut point tersebut > Kemudian copy koordinat nya.
- Cari tools Upslope Area pada Processing Toolbox > Masukkan koordinat XY (UTM) pada parameter Target X coordinate dan Target Y coordinate
  - Target Area kosongkan saja
- Masukkan "FILLED DEM" sebagai Elevation
- Sink Routes kosongkan
- Method gunakan [0] Deterministic 8
- Convergence default saja
- Atur output file > Klik Run

Target Area [optional] Target X coordinate 616605,920000 Target Y coordinate 9253762.463000 Elevation FILLED\_DEM [EPSG:32748] Sink Routes [optional] Method [0] Deterministic 8 Convergence 1,100000

0%

|                                            | Contour Length                                          |  |
|--------------------------------------------|---------------------------------------------------------|--|
|                                            | Upslope Area                                            |  |
|                                            | C:/00_NGI/01_PEMETAAN_DAS/02_Tutorial/UPSLOPE_AREA.sdat |  |
| ✓ Open output file after running algorithm |                                                         |  |

🔇 Terrain Analysis - Hydrology - Upslope Area

Parameters Log

• ...

፼ ‡

≤ ‡

• ...

• ...

Ŧ

+

∞ ....

Cancel

Advanced \* Run as Batch Process.. Apabila ditemukan kesalahan informasi dalam dokumen ini, harap menghubungi kami melalui email: ngi@ecobes.id | HP: +62 851-2102-9441 (Whatsapp).



 Hasil akhirnya menjadi terbentuk DAS mengikuti aliran sungai dari outlet point yang ditentukan



# D. Ekstraksi atau Delineasi DAS (Menggunakan jaringan sungai Strahler's Order)

| Q Terrain Analysis - Channels - Channel Network and Drainage Basins |     | ×        |
|---------------------------------------------------------------------|-----|----------|
| Parameters Log                                                      |     |          |
|                                                                     |     | *        |
|                                                                     |     | <b>.</b> |
| Threshold                                                           |     |          |
| 6                                                                   |     | A        |
|                                                                     |     | THE Y    |
| Subbasins                                                           |     |          |
| [Save to tomogram file]                                             |     |          |
|                                                                     |     |          |
| Open output file after running algorithm                            |     |          |
|                                                                     |     |          |
|                                                                     |     |          |
| Ctrabler Order Continnal                                            |     |          |
|                                                                     |     |          |
|                                                                     |     |          |
| Open output file after running algorithm                            |     |          |
|                                                                     |     |          |
| [Lisave to temporary file]                                          |     |          |
| Open output file after running algorithm                            |     |          |
| Channels                                                            |     |          |
| [Save to temporary file]                                            |     |          |
| Open output file after running algorithm                            |     |          |
| Drainage Basins                                                     |     |          |
| [Save to temporary file]                                            |     |          |
| Open output file after running algorithm                            |     |          |
| Junctions [optional]                                                |     |          |
| [Save to temporary file]                                            |     |          |
| Open output file after running algorithm                            |     | Ŧ        |
|                                                                     |     |          |
| 0%                                                                  |     | Cancel   |
| Advanced * Run as Batch Process                                     | Run | Close    |

- Gunakan tools Channel Network and Drainage Basins pada Processing Toolbox
- "FILLED\_DEM" sebagai input Elevation
- Atur Threshold sesuai perhitungan Strahler order dengan **Raster Calculator**
- Checklist Drainage Basins saja untuk menghasilkan delineasi DAS
- Output yang pertama berupa data raster, sementara yang kedua (di bawahnya) berbentuk vektor (shapefile)
- Atur output file > Klik **Run**





Berikut adalah hasil dari delineasi DAS menggunakan jaringan sungai hasil Strahler's Order

## Kesimpulan

Hasil dari kedua metode dalam mengekstraksi jaringan sungai dan delineasi daerah aliran sungai memiliki kelemahan dan kelebihan masing-masing. Apapun metode yang Anda gunakan, kembali bergantung pada kebutuhan serta tujuan Anda. Pada dasarnya, teori yang digunakan pada kedua metode ini ialah sama, tetapi pendekatan dan visualisasi yang dihasilkan saja sedikit berbeda.



Kreasikan peta daerah aliran sungai-mu sendiri ya, good luck!