

Validasi Data DAS

Pendahuluan

Validasi hasil ekstraksi jaringan sungai dari Digital Elevation Model (DEM) merupakan langkah penting dalam memastikan akurasi pemetaan hidrologi. Hasil ekstraksi yang tidak akurat dapat menyebabkan kesalahan dalam pemodelan hidrologi, perencanaan tata ruang, hingga mitigasi bencana seperti banjir. Oleh karena itu, diperlukan metode validasi yang dapat mengevaluasi sejauh mana hasil ekstraksi jaringan sungai dari DEM sesuai dengan kondisi sebenarnya.

Secara umum, validasi hasil ekstraksi jaringan sungai dapat dilakukan dengan beberapa metode, antara lain:

• Perbandingan Visual

- Membandingkan hasil ekstraksi dengan data acuan seperti peta hidrologi, citra satelit, atau hasil survey lapangan.
- Memanfaatkan overlay antara hasil ekstraksi dengan peta referensi untuk melihat kesesuaian pola aliran.
- Analisis Statistik
 - Menggunakan parameter kuantitatif seperti Root Mean Square Error (RMSE), Mean Absolute Error (MAE), dan standar deviasi untuk mengukur perbedaan antara hasil ekstraksi dan data acuan.
- Validasi dengan Data Ground Truth
 - Menggunakan titik-titik referensi dari survei lapangan atau peta sumber terpercaya, seperti OpenStreetMap (OSM), untuk mengukur deviasi posisi antara jaringan sungai hasil ekstraksi dan jaringan sungai referensi.

Dalam materi ini, validasi dilakukan dengan membandingkan **jarak terdekat** antara garis vektor sungai DEM terhadap titik *ground truth* dari peta OSM. Nilai akurasi akan dihitung menggunakan RMSE dan standar deviasi, yang akan memberikan informasi kuantitatif tentang sejauh mana hasil ekstraksi mendekati data referensi.

Disclaimer : metode validasi ini hanya sebagai contoh dari banyak metode yang dapat Anda gunakan*

1. Root Mean Square Error (RMSE)

RMSE digunakan untuk mengukur rata-rata kesalahan dalam bentuk jarak antara hasil ekstraksi jaringan sungai dari DEM dan titik referensi. Rumusnya adalah:

$$RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n} (d_i)^2}$$

Dimana:

- d_i = jarak terdekat dari titik ground truth ke garis jaringan sungai hasil ekstraksi DEM
- *n* = jumlah titik sampel

Interpretasi :

- Nilai RMSE yang lebih kecil menunjukkan bahwa hasil ekstraksi lebih dekat dengan referensi dan memiliki akurasi yang lebih baik.
- Nilai RMSE yang besar menunjukkan adanya deviasi yang signifikan antara hasil ekstraksi dan referensi.

2. Standar Deviasi (σ)

Standar deviasi digunakan untuk mengukur sebaran kesalahan atau variasi posisi antara hasil ekstraksi DEM dan titik ground truth. Rumusnya adalah:

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (d_i - \overline{d})^2}$$

Dimana:

- d_i = jarak terdekat dari titik ground truth ke garis jaringan sungai hasil ekstraksi DEM
- \overline{d} = rata-rata dari semua jarak terdekat
- *n* = jumlah titik validasi

Interpretasi:

- Standar deviasi kecil menunjukkan bahwa perbedaan jarak antara titik ground truth dan hasil ekstraksi relatif konsisten.
- Standar deviasi besar menunjukkan adanya variasi tinggi dalam kesalahan, yang bisa disebabkan oleh hasil ekstraksi yang tidak seragam atau ketidaksesuaian pada bagian tertentu dari jaringan sungai.

Input data jaringan sungai hasil ekstraksi "SUNGAI_DEM" dan titik ground truth "GROUND_TRUTH" ke dalam QGIS

Q Vector Point Tools - Point to Line Distances				×
Parameters Log				
Points				*
* GROUND_TRUTH [EPSG:32748]	•	ርኃ	Z,	
Selected features only			Ť	
Lines				
V*SUNGAI_DEM [EPSG:32748]	•	C)	2	
Selected features only				
Identifier				
123 SegmentID				•
Result [optional]				
[Save to temporary file]				
Open output file after running algorithm				
Distances [optional]				
[Save to temporary file]				
\checkmark Open output file after running algorithm				
				*
0%			С	ancel
Advanced * Run as Batch Process	R	un		Close

Cari tools **Point to Line Distances** dari plugin SAGA pada Processing Toolbox > Masukkan "GROUND_TRUTH" pada parameter **Points** > Masukkan "SUNGAI_DEM" pada parameter **Lines** > Atur **Identifier** sesuai field Id (SegmentID) pada data titik *ground truth* > Atur output **Distances** saja (*temporary file* juga tidak masalah) > Klik **Run**

*Tools **Point to Line Distances** akan menghitung jarak terdekat dari titik *ground truth* terhadap line sungai hasil ekstraksi. Hasil tersebut akan digunakan sebagai dasar perhitungan akurasi hasil ekstraksi DEM

~~ (POINT_ID	LINE_ID	DISTANCE
	1	0	1	14,5782249200
	2	1	1	44,0922574070
	3	2	1	18,4272471350
$\downarrow \qquad \checkmark$	4	3	1	25,1490493800
	5	4	1	7,3013002686
↓	6	5	1	0,6419669488
	7	6	1	9 <mark>,660432172</mark> 1
	8	7	1	18,7915502010
	9	8	1	13,4922260430
	10	9	1	14,6448752500
	11	10	1	20,6223192940
	12	11	1	6.3330520503

Output dari **Point to Line Distances** adalah shapefile berupa line (sebelah kiri). Pada Attribute Table hasil perhitungan jarak, terlihat pada field "DISTANCE", nilai jarak terdekat (dalam meter) setiap titik *ground truth* terhadap jaringan sungai hasil ekstraksi

Klik Save Feature As

Save Vector Lay	/er as				>
Format M	S Office Open	XML spreadsheet	[XLSX]		•
File name	0_NGI\01_PE	METAAN_DAS\02_	Tutorial\VALIDAS	I_SUNGAI_DEM.xlsx	⊠
Layer name di	stances				
CRS EI	PSG:32748 - V	VGS 84 / UTM zone	e 48S		•
Encoding		UTF-8			Ŧ
Save only se	elected feature	S			
Select field	ds to export	and their export	options		
✓ Persist layer	metadata				
▼ Geometry					
Geometry typ	e		Automatic		¥
Force mul	ti-type				
Include z-	dimension				
 ▶ Extent ▼ Layer Opti 	(current: no ions	ne)			
OGR_XLSX_F	IELD_TYPES	AUTO			•
OGR_XLSX_H	IEADERS	AUTO			•
Custom Optimization	ptions				
		Add saved file to r	nap OK	Cancel	Help

Save output dengan format Excel (.XLSX) > Atur

file penyimpanan > Hapus checklist "Add saved

to map" > Klik OK

Buka file hasil export dengan Excel. Pada Excel ini kita akan melakukan perhitungan RMSE dan Standar Deviasi

C2 ~	$X \checkmark f_x$	=C2^2		
A	B		С	D
1 POINT_ID	LINE_ID	D	ISTANCE	DISTANCE ²
2	0	1	14.57822492	=C2^2
3	1	1	44.09225741	
4	2	1	18.42724714	
5	3	1	25.14904938	
6	4	1	7.301300269	
7	5	1	0.641966949	
8	6	1	9.660432172	
9	7	1	18.7915502	
10	8	1	13.49222604	
11	9	1	14.64487525	
12	10	1	20.62231929	
13	11	1	6.33305205	
14	12	1	59.36384805	
15	13	1	22.54899655	
16	14	1	28.00774606	
17	15	1	39.43638153	

	A	В	С	D
1	POINT_ID	LINE_ID	DISTANCE	DISTANCE [^] 2
2	0	1	14.57822492	212.5246418
3	1	1	44.09225741	1944.127163
4	2	1	18.42724714	339.563437
5	3	1	25.14904938	632.4746847
6	4	1	7.301300269	53.30898561
7	5	1	0.641966949	0.412121563
8	6	1	9.660432172	93.32394975
9	7	1	18.7915502	353.122359
10	8	1	13.49222604	182.0401636
11	9	1	14.64487525	214.4723711
12	10	1	20.62231929	425.2800531
13	11	1	6.33305205	40.10754827
14	12	1	59.36384805	3524.066455
15	13	1	22.54899655	508.4572455
16	14	1	28.00774606	784.4338395
17	15	1	39.43638153	1555.228188
18	16	1	35.66668715	1272.112572
19	17	1	28.92708819	836.7764314
20	18	1	47.77838233	2282.773818
21	19	1	33.30035996	1108.913973
22	20	1	32.97313241	1087.227461
23	21	1	32.26494979	1041.026985
24	22	1	20.10668865	404.2789285
25	23	1	34.19317504	1169.17322
26	24	1	16.10934285	259.510927
-07	05		05 1005 110	0.40,0000040

Tambahkan kolom kuadrat dari jarak tersebut "DISTANCE^2" > Masukkan formula dari kuadrat yaitu (= cell^2) > Klik Enter > Klik dua kali pada pojok kanan cell hasil perhitungan agar kuadrat dari seluruh nilai jarak dapat dihasilkan (sebelah kanan)

√ : X √ fx sQRT(AVERAGE(D2:D201))							
A	BS	QRT(number)				G	
1 POINT_ID	LINE_ID	DISTANCE	DISTANCE ²				
2 0	1	14.57822492	212.5246418		RMSE	=SQRT(AVERAGE	(D2:D201)
3 1	1	44.09225741	1944.127163				
4 2	1	18.42724714	339.563437				
5 3	1	25.14904938	632.4746847				
6 4	1	7.301300269	53.30898561				
7 5	1	0.641966949	0.412121563				
8 6	1	9.660432172	93.32394975				
9 7	1	18.7915502	353.122359				
10 8	1	13.49222604	182.0401636				
11 9	1	14.64487525	214.4723711				
12 10	1	20.62231929	425.2800531				
13 11	1	6.33305205	40.10754827				
14 12	1	59.36384805	3524.066455				
15 13	1	22.54899655	508.4572455				
16 14	1	28.00774606	784.4338395				
17 15	1	39.43638153	1555.228188				

- Masukkan rumus RMSE yakni (=SQRT(AVERAGE(DISTANCE^2))
- Masukkan seluruh nilai pada kolom "DISTANCE^2" sebagai input
- Klik Enter, hasilnya akan muncul

G	G3 $\checkmark f_x$ =STDEV.P(C2:C201)						
	A	В	С	D	Е	F	G
1	POINT_ID LIN	IE_ID	DISTANCE	DISTANCE^2			
2	0	1	14.57822492	212.5246418		RMSE	45.09664368
3	1	1	44.09225741	1944.127163		SD	=STDEV.P(C2:C201)
4	2	1	18.42724714	339.563437			
5	3	1	25.14904938	632.4746847			
6	4	1	7.301300269	53.30898561			
7	5	1	0.641966949	0.412121563			
8	6	1	9.660432172	93.32394975			
9	7	1	18.7915502	353.122359			
10	8	1	13.49222604	182.0401636			
11	9	1	14.64487525	214.4723711			
12	10	1	20 62231020	125 2800531			

Untuk menghitung Standar Deviasi (SD) dari seluruh nilai jarak, masukkan formula (=STDEV.P(DISTANCE)) > Masukkan seluruh nilai pada kolom "**DISTANCE**" sebagai input > Klik Enter maka hasilnya akan muncul

RMSE	45.09664368
SD	34.51026816

Hasil perhitungan menunjukkan **RMSE sebesar 45.09** dan **Standar Deviasi sebesar 34.51**. Artinya, nilai RMSE menunjukkan bahwa pergeseran (error) atau tingkat deviasi rata-rata dari jarak jaringan sungai hasil ekstraksi terhadap titik referensi adalah 45.09 meter. Sementara, standar deviasi menunjukkan sebaran kesalahan atau variasi jarak antara jaringan sungai DEM dengan titik referensi adalah 34.51 meter. Hasil ini terbilang cukup besar atau tidak akurat secara kedekatan jarak jaringan sungai hasil ekstraksi dengan titik referensi, sehingga perlu adanya perbaikan dari metode ekstraksi dan metode dalam menguji akurasi hasil ekstraksi. Namun, apabila kita lihat dari pola jaringan yang terbentuk maka kita bisa menilai apakah jaringan sungai hasil ekstraksi sudah cukup mewakili gambaran dari pola jaringan sungai yang sesungguhnya di lapangan.

Kesimpulan

Melalui validasi ini, kita dapat menilai seberapa akurat hasil ekstraksi jaringan sungai berbasis DEM dibandingkan dengan referensi nyata. RMSE akan memberikan gambaran tentang tingkat deviasi absolut, sedangkan standar deviasi akan menunjukkan variasi kesalahan dalam dataset. Dengan demikian, kita dapat menentukan apakah hasil ekstraksi sudah dapat diterima atau perlu perbaikan lebih lanjut.